首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   29篇
  国内免费   7篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   13篇
  2020年   15篇
  2019年   13篇
  2018年   15篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   19篇
  2012年   12篇
  2011年   23篇
  2010年   8篇
  2009年   13篇
  2008年   17篇
  2007年   12篇
  2006年   13篇
  2005年   16篇
  2004年   7篇
  2003年   13篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
排序方式: 共有299条查询结果,搜索用时 242 毫秒
91.
Interaction between hyaluronic acid (HA) present at the surface of tubular epithelial cells and calcium oxalate monohydrate (COM) crystals is thought to play an important role in kidney stone formation. AFM-based force spectroscopy, where HA is covalently attached to AFM-probes, was used to quantify the interaction between HA and the surfaces of COM crystals. The work of adhesion of the HA-probe as well as the rupture force of single HA molecules were quantified in order to understand the molecular regulation of HA binding to COM crystals. Our results reveal that HA adsorbs to the crystal surface in physiological conditions. We also observed increased adhesion when the pH is lowered to a value that increases the risk of kidney stone formation. HA adhesion to the COM crystal surface can be suppressed by citrate, a physiological inhibitor of stone retention currently used in the treatment and prevention of kidney stone formation. Interestingly, we also observed preferential binding of HA onto the [100] face versus the [010] face, suggesting a major contribution of the [100] faces in the crystal retention process at the surface of tubular epithelial cells and the promotion of stone formation. Our results clearly establish a direct role for the glycosaminoglycan HA present at the surface of kidney tubular epithelium in the process of COM crystal retention.  相似文献   
92.
The ovine endometrium is subjected to cyclic oscillations of estrogen and progesterone in preparation for implantation. One response to fluctuating hormonal levels is the degree of hydration of the tissue, suggesting cyclical alterations in glycosaminoglycan/proteoglycan content. The aim of the present study was to quantitate and characterize glycosaminoglycans in the ovine endometrium during estrogen and progesterone dominant stages. Endogenous endometrial glycosaminoglycan content was determined by chemical analysis and characterized by enzyme specific or chemical degradation. [(35)S]-sulphate and [(3)H]-glucosamine labeled proteoglycans/glycosaminoglycans were extracted by cell lysis or with 4M guanidine-HCl. Extracts were purified by anion exchange and gel chromatography and characterized as above. Estrogen and progesterone dominant endometrium contained 3.2 +/- 0.1 and 2.1 +/- 0.1 mg endogenous glycosaminoglycan/g dehydrated tissue, respectively. Characterization of endogenous glycosaminoglycan showed chondroitin sulphate and hyaluronan contributing over 80%. The major difference between hormonal dominant tissue was a higher estrogenic hyaluronan percentage and a higher progestational keratan sulphate percentage (p < 0.001). Estrogen dominant tissue incorporated 1.6-1.9 fold more radiolabeled proteoglycans/glycosaminoglycans (p < 0.001). Analysis of newly synthesized proteoglycans/glycosaminoglycans revealed a heparan/chondroitin sulphate ratio of 1:2.2-2.5. Keratan sulphate was not detected. Estrogenic hyaluronan was 1.6 fold greater in [(3)H]-labeled tissue. Analysis of labeled proteoglycans/glycosaminoglycans revealed two size classes with apparent molecular weights >2.0 x 10(6) and 0.8-1.1 x 10(5) and a charge class eluting between 0.1-0.5 M NaCl. The greater glycosaminoglycan content (particularly hyaluronan) and synthesis in estrogen dominant tissue supports a role for steroid hormones in endometrial glycosaminoglycan/proteoglycan regulation and consequent tissue hydration. It also suggests a role for these macromolecules in endometrial function and possibly the implantation process.  相似文献   
93.
A low molecular weight isoform of hyaluronidase (NNH2) has been isolated from Indian cobra (Naja naja) venom by successive chromatography on Sephadex G-75 and CM-Sephadex C-25 columns. The apparent molecular weight determined by SDS-PAGE is 52 kD, and the pI value is 9.7. NNH2 is an endoglycosidase and exhibits in vitro absolute specificity for hyaluronan; it also hydrolyzed hyaluronan in human skin sections. NNH2 is nontoxic, but it indirectly potentiates the hemorrhagic activity of hemorrhagic complex-I. Curcumin, indomethacin, and tannic acid inhibited dose dependently the degradation of hyaluronan by NNH2.  相似文献   
94.
95.
This article is the first one in a series dedicated to the study of hyaluronan as observed by IR spectrometry. The goal is to determine its hydration mechanism and the structural changes this mechanism implies. Hyaluronan is a natural polysaccharide that is widely used in biomedical applications and cosmetics. Its macroscopic properties are significantly dependent on its degree of hydration. In this article we record the IR spectrum of a several micron thick dried film and deduce that four or five residual H(2)O molecules remain around each disaccharide repeat unit in the dried film. We then compare the spectra of sodium hyaluronan and its acid form to assign vibrational bands linked to the carboxylate group. We proceed with a qualitative analysis of the spectral changes induced by changes of temperature and hygroscopicity, two independent parameters that act by modifying the hydrogen bond network of the sample. This enables us to assign most of the vibrational bands of the hydrophilic groups and to distinguish the bands that are due to these hydrophilic groups when they are or are not hydrogen bonded. It constitutes a prerequisite for the quantitative analysis of hydration spectra that will be described in the following articles of this series.  相似文献   
96.
A practical fluorescence-based assay method for determination of hyaluronan (HA) was developed. Plates were coated with hyaluronan-binding proteins (HABP) obtained from bovine cartilage and successively incubated with samples containing standard solutions of hyaluronan or serum from normal and cyrrhotic patients, biotin-conjugated HABP, and europium-labeled streptavidin. After release of europium from streptavidin with enhancement solution the final fluorescence is measured in a fluorometer. The method is specific for HA even in the presence of substantial amounts of other glycosaminoglycans (chondroitin, dermatan sulfate, and heparan sulfate, and heparin) or proteins. It is possible to quantify HA between 0.2 and 500.0 microg/L. Analyses of HA concentration in 545 normal subjects and 40 cirrhotic patients gave average values of 14.5 and 542.0 microg/L, respectively. It was also shown that older subjects (> or =51 years old) have more HA (28.0 microg/L) than younger subjects (12.0 to 14.0 microg/L). This new sandwich technique has shown high precision and sensitivity similar to those of a recently described fluorescence-based assay method, being able to measure HA in amounts as small as 0.2 microg/L. In addition, this noncompetitive assay avoids preincubation, consumes less time (<5 h) than the previous competitive fluorescence-based assay (>72 h), and avoids the use of radioactive materials.  相似文献   
97.
Embryonic induction, soluble and insoluble factors, receptors, and signal transduction are orchestrated for the morphogenesis of the cartilage elements. The interaction of cells with the extracellular matrix (ECM) may lead to altered cellular response to morphogens based on the formation of new adhesive contacts, or the uncoupling of cell-matrix interactions. Hyaluronan's influence on cell behavior, and its intimate association with cells are accomplished by a wide variety of specific binding proteins for hyaluronan. The temporal expression of the hyaluronan receptor CD44 (which is expressed as several alternatively spliced variants) may be strategic to many of these cell-matrix interactions during chondrogenesis. CD44 expression is temporally coincident with the reduction of intercellular spaces at the regions of future cartilage deposition. The spatial organization of CD44 at the cell surface may function to establish or regulate the structure of the pericellular matrix dependent on a hyaluronan scaffold. As the ECM is modified during embryogenesis, the cellular response to inductive signals may be altered. An uncoupling of chondrocyte-hyaluronan interaction leads to chondrocytic chondrolysis. Thus, consideration of cell-matrix interactions during chondrogenesis, in the light of our current understanding of the temporal and spatial expression of signaling morphogens, should become a promising focus of future research endeavors.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号